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Abstract

Numerical predictions of bloodflowandhemodynamic properties through stenosis and aneurysm
artery have been studied in the presence of blood clots at the constricted area. The finite ele-
ment method has been used to solve the partial differential equations of continuity, momentum,
Oldroyd-B, and bioheat transport in cartesian coordinates systems. The present investigation
carries the potential to compute blood velocity, pressure, and drag coefficients with significance
at the throat of stenosis and aneurysm. The models have also been employed to study simula-
tion, blood clots, and hemodynamic characteristics for all modifications. The impact of shear-
thinning on blood flow is intensified compared to the viscoelastic properties. It is found that the
maximum effect of the drag coefficient is visible at the hub of stenotic for nonclotting models.
The highest pressure and the lowest velocity are gained for the presence of blood clots at the
constraint area. The impact of stenosis and aneurysm artery, drag coefficient, and blood clots
on blood flow is the main physical outcome that may be reported in medical science to iden-
tify atherosclerosis diseases. The quantitative analysis has been completed numerically with
the physiological significance of hemodynamic factors of blood flow which shows the validity
of the present model.

Keywords: setnotic and aneurysmatic arter; finite elementmethod; cardiovascular disease; blood
clots.
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1 Introduction

The cardiovascular system of the human body is affected due to irregular cell increases or de-
creases in blood vesselswhich leads to arterial diseases in various organs. Although it is not clearly
identified of exactmechanisms for inventing thismatter. It’s been found that blood flowdisorders,
initiation of arterial diseases and irregularities have been created from mild stenosis [31, 38]. A
good number of researchers are continuing studies to understand stenotic blood flow experimen-
tally, theoretically, and numerically. Smith [56] has details studied of steady flow through an ax-
isymmetric stenosis artery and shown that blood flow strongly depends on the stenotic geometry
condition. The real understanding of the bloodpulsatile flowcannot be ignored. Many researchers
have completed their studies with laboratory-based, theoretically, and computationally on blood
flow at stenotic conditions for Newtonian fluid [9, 32, 39, 14, 15]. It is very important that blood
flow obeys Newtonian law for high shear rate flow. In case of a low shear rate, the fluid behavior
will be non-Newtonian, especially if the blood flow is in smaller arteries and the down steam of
the stenosis. It has been pointed out that blood shows non-Newtonian performances (Thixotropy,
Viscoelasticity, and Shear-thinning) for cardiovascular diseases. Recently, researchers [34] have
been givenmore concentrations for non-Newtonian blood flow analysis with various stenosis con-
ditions and still have a lot of scopes to work in this area.

In this paper, we have also considered the aneurysm condition of blood vessels. It is another
severe situation that about 75 percent of all patients have died before reaching the hospital, and
it is an extreme risk for the human body [36]. Ingoldby et al. [26] have shown that when these
prehospital deaths are counted, the overall mortality rate may exceed 90 percent. Ernst [18] has
studied the increasing median age of the population contributes to increasing incidence. It is im-
portant to identify the risk features that may play a key role in aneurysm growth and rupture,
which have become a unified multidisciplinary task to a clear understanding of the pathogenesis
and growth of aneurysms. Numerical and experimental studies have been performed to inter-
pret blood flow through aneurysmatic artery during the last and present decades [60, 16, 55] and
biomechanics has been receiving the attention of researchers in this area and providing numerical
solutions of human blood flow systems in various conditions [13]. In most of the inquiries, flow is
considered in cylindrical pipes with uniform cross-section areas. But it is well known that blood
vessels deform at the change of bone shape for various reasons in the human body. Hence, the
idea of blood flow in various cross-sections forms the prime basis of a large class of problems in
understanding blood flow patterns. Most of the studies have considered long, narrow and taper-
ing vessels for blood flow analysis [44, 35, 22] of Newtonian and non-Newtonian cases. Thus, the
effects of stenotic and aneurysmatic vessels with the non-Newtonian performance of the flowing
blood seem to be identically significant and hence definitely deserve special consideration.

Recently, it is found that the classical Newtonian fluids are not appropriate to illustrate the
physiological fluids in the human organ. The fluid of the human body has exhibited more sophis-
ticated behaviors due to the viscoelasticity, shear thinning, shear thickening, and memory effects.
So, it is very difficult to predict all their non-Newtonian characteristics due to the complexity in the
rheology of various body materials. Hence, various models are used to describe the appropriate
functionality of rheological features of human blood fluids [54, 27, 50]. The Oldroyd-B, a non-
Newtonian fluid, is used to describe the viscoelastic properties of physiological fluids [41, 46, 20].
Some physical applications of this fluid are chemical processing (polymers), biological materials
(blood), plastics manufacturing industry, mining processing industry, oiling industry, biofluid,
viscoelastic fluids like paints, honey, toothpaste, DNA suspensions, and the chemical industry of
shampoo and creams, etc. In general, these fluids show certain different features such as viscosity,
viscoelasticity, viscoelasticity, history effects, etc. [65].
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Therefore, we are motivated by the mathematical study of blood flow through stenotic and
aneurysmatic arteries with blood clots. Thus, an effort is made in the present theoretical study
to develop a mathematical model and numerical analysis in order to investigate the significant
characteristics of the blood flow through a rigid stenotic and aneurysmatic vessel. The general-
ized cross model has been used to analyze the non-Newtonian behaviour of flowing blood flow.
Malek et al. [33, 54] have widely studied the existence and uniqueness, as well as the stability
characteristics of streaming flow problems. The present problem is one of the major physiological
significance, due attention is also paid to comparable studies in the presence of blood clots and
without blood clots for the considered model.

The novelty of this work is to identify the atherosclerosis diseases in case of blood clots and
stenotic (without blood clots) conditions by drag coefficient. The drag coefficient value indicates
the existence of a stenotic artery, and the maximum value is found in the generalized Oldroyd-B
case. It is another finding that the recirculation zones are more prominent at the throat of the
stenotic artery compared to the blood clot area. A theoretical correlation has been found between
velocity and pressure for all models. Due to the presence of blood clots at the stenosis artery, the
blood flow pattern has been affected significantly. The impact of the stenotic region or aneurys-
matic artery leads to identifying arterial diseases. The effect of the drag coefficient on the blood
flow is an important factor in the onset of vascular diseases which is the uniqueness of the study.
We have used the following notations which are available in mathematical structures. The dimen-
sionless numbersWeissenberg number, Reynolds number and Prandtl number are denoted byWi,
Re, Pr respectively, sigma denotes stress tensor and P is the pressure. The velocity components
are U and V along with X and Y respectively. The perfusion coefficient is visco-elasticity com-
ponents, and the heat source is denoted by Q. The frequently used nomenclature in this paper is
summarized in Table 1.

Table 1: The frequently used nomenclature.

σ Stress Tensor (Pa) µn Polymer viscosity
σv Viscous stress tensor (Pa) µs Solvent viscosity
σn Solvent stress tensor (Pa) V / Anti-symmetry velocity gradient
L height γ̇ Rate of deformation tensor
I Identity matrix u, v velocity components (ms-1)
Wi Weissenberg number U,V Dimensionless velocity components
p pressure (Nm−2) Greek symbols
P non-dimensional pressure µ Viscosity (N sm−2 )
Re Reynold number γ Deformation tensor
q Flow rate (m2/s) ρ density of the fluid (kgm−3)
λx Relaxation time υ kinematic viscosity of the fluid (m2)(s−1)

λd Retardation time τs Extra-stress tensor (N/m2)
V Symmetry velocity gradient

2 Preliminaries

This section briefly reviews some fundamental concepts frompreviousworks of literature. The
goal is to establish some notations and results that will be used in the later section of this paper.

Since the invention of stenosis or aneurysm effect on blood flow in our human arteries has
created serious disorders in the circulatory system that lead to various cardiovascular diseases
such as arteriosclerosis, bleeding, stroke, kidney damage, etc. [28,29]. At present, medical re-
searchers, bioengineers and numerical scientists join efforts to provide numerical simulations of
human blood flow systems under different conditions. The exchange of knowledge and data in-
formation is the core purpose of this kind of collaboration that can be used in simulations. A
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relation has been established by Thurston [59] between blood shear rate and the viscoelasticity of
blood flow. Firstly, Wille [64] has described the numerical study of pulsatile blood flow through
aneurysms vessels and shown the existence of vortex of various sizes during the cardiac cycle.
Oka [40] has studied a taper analysis of blood flow to identify arterial disease, and shown pres-
sure development is a vital factor in atherosclerosis diseases. Kumar et al. [30] have explained the
pulsatile suspension flow in a dilated blood vessel. They have determined the additional compli-
cations of hemodynamics in diseased arterial vessels having an aneurysm and stenosis artery.

During the blood circulation system, the hemodynamic features of blood can play a vital role
in developing severe cardiovascular diseases. Anand et al.[7] have described a model for blood
flow simulation with Oldroyd-B fluid properties. They have [6, 47] also exposed a model with
blood clots for the formation and analysis. Shih et al. [53] have studied on skin surfaces with
sinusoidal heat flux conditions. A thermodynamic framework has been studied by Rajagopal and
Srinivasa [47] to show the blood viscoelastic response with various configurations. With the pres-
ence of hematocrit in a local aneurysm, the systematic analysis of flow features through a tube and
artery has been studied by Mukhopadhyay and Layek [36]. Prokop and Kozel [45] have shown a
numerical simulation of generalized Newtonian and Oldroyd-B fluids with an extended compu-
tation domain. Nadeem et al. [38] have shown the reduction of wall shear stress and resistance
impedance to blood flow with the influence of metallic nanoparticles.

Akbar et. al. [67] have analyzed the slip effects on unsteady non-Newtonian blood flowhaving
an inclined catheterized overlapping stenotic artery. They [66] have also discussed a theoretical
study of an unsteady two-layered blood flow through a w-shaped stenosed artery using general-
ized Oldroyd-B fluid. The pulsatile blood flow has been described by Achab et al. [3] to evaluate
the blood flow characteristics and the wall shear stress under physiological conditions through
a stenosis artery. Magnetohydrodynamics (MHD) thin-film flow and thermal analysis of blood
with CNTs nanofluid have been studied by Alsagri et. al [5]. Zahir shah et. al. [52] have dis-
cussed the micropolar gold blood nanofluid flow and radiative heat transfer between permeable
channels. Nasir and Alim [61] have described blood flow through stenotic arteries with various
flow rates numerically. Later, they [62] have also demonstrated numerical investigation of blood
flow through a double stenotic artery. Zhang et. al. [71] have studied an entropy analysis on
the blood flow using nanoparticles for tapered arteries. Bhatti et. al. [10] have studied the mass
transfer biologically on the rheology for Williamson nanofluid flow under convection with mag-
netic impacts. The Mathematical analysis has been discussed for blood flow through a bifurcated
artery by Rajasekhar et. al [48] using the finite element method.

Recently, Akbar et. al. [69] have discussed the effects of nanoparticles on unsteady blood flow
through stenosed vessels and determined numerically. A biomedical study of nanoparticles on
unsteady blood flow through a catheterized stenotic vessel has been analyzed by the same authors
[70]. Soon after that, Akbar and Ambreen [68] studied the curvature effects on nano-fluid flow
in a w-shape stenosed channel with time-dependent. Hoque et. al [25] have detected the severity
of atherosclerotic for single and multiple stenoses in a coronary artery.

A large-scale numerical analysis has been carried out by performing mathematical computa-
tions of the desired quantities having more physiological significance to explore the effect of the
stenotic vessel, aneurysmatic artery, blood clots, drag coefficient, and dimensionless numbers. The
non-Newtonian behaviour of the streaming blood on the physiological flow phenomena, which
are extensively quantified through their graphical representations are presented in the result sec-
tionwith appropriate scientific discussion. A comparative study has been exposed in the presence
of blood clots and without blood clots to know the significances of coagulation blood. Code val-
idation results are also shown with Prokop et. al. [45] to authenticate the applicability of the
present study.
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3 Modeling and Analysis of Blood Flow

This section contains the main results of this paper. At first, we have specified the physical
model. Then formulate themathematicalmodel using partial differential equations (PDE)with its
boundary conditions. Finally, a numerical technique has been discussed to solve themathematical
model efficiently.

3.1 Model Specifications

The treated model is a two-dimensional rigid artery with stenosis and aneurysm vessel wall
in a cartesian system. The considered model in the present study is displayed in Figure 1. Fig-
ures 2 and 3 are the focal motivations for considering the present model. The model is considered
with stenosis and aneurysmal heights hs = R and ha = 3R. The upper and bottom stenosed
vessel walls are cool (Tc) and heated (Th), while the rest of the walls are adiabatic and imperme-
able with no-slip conditions. The velocity profile and the pressure are prescribed at entrance and
departure respectively. Blood flow acceleration is expected at stenotic and aneurysmatic cross-
sectional areas. A mathematical structure has been used by Achab et. al. [3] with cosine shaped
for the stenosis model. Themodifiedmathematical model of physical construction in the presence
of stenosis and aneurysm is in cosine shape as follows:

y =

 0.5D
[
1− ε

D (1 + cosπ M(x))
]

; 0 ≤ x ≤ Ls
0.5D

[
1 + ε

D (1 + cosπ N(x))
]

;Ls < x ≤ La
1 ;Otherwise

 ;

whereM (x) = x − xs
L and N (x) = x − xa

L , xs and xa are the centers of stenosis and aneurysm
respectively, L is the length of stenosis and aneurysm, ε is the maximum height of stenosis and
aneurysm, the model diameter, D=2R, the location of stenosis, Ls = 3R, the position of aneurysm
La= 3R, total model length is 10R and R=3.1.

Figure 1: Structure of the computational domain.
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Figure 2: View of severe spinal stenosis [2]. Figure 3: View of development of plaque [?].

3.2 Mathematical Model

The functioning fluid is assumed to be laminar blood flow and incompressible with shear-
thinning and viscoelasticity properties. The generalized Oldroyd-B model is used to capture non-
Newtonian properties of blood flow. The leading mathematical equations of the conservation of
mase (continuity equation), momentum equation (Navier Stokes equation) [11, 19] Oldroyd-B
constitutive equation [42] and bio-heat equation [43] for steady-state blood flow is given below:
Continuity Equation:

∇. u = 0 (1)

Momentum Equation:

ρ
∂u
∂t

+ ρ(u.∇)u = −∇p + µn∆u +∇.σ + ρf (2)

ρ
∂v
∂t

+ ρ(v.∇)v = −∇p + µn∆v +∇.σ + ρf (3)

Oldroyd-B Constitutive Equation:

σ + λx[
∂σ

∂t
+ (u.∇)σ] = 2∇vV(u) + λx[σV ′ − V ′σ − σV − V σ] (4)

Bio-heat Equation:

ρcp[
∂T

∂t
+ (u.∇)T ] = K∇2T + q + ρbcbwb(Tb − T ) (5)

Here, u = (u1, u2, u3)T is the velocity vector, ρ is constant density, σ = -pI+2µnV+T is total stress
tensor, µ = µv + µn. is dynamic viscosity, λx denotes relaxation time, T is extra stress tensor, p is
pressure, the symmetric part of the velocity gradient, V = 1

2 (∇u +∇uT ) i.e. σ = 2µV , ρb is blood
density, Tb is arterial blood temperature, wb is blood perfusion rate, cb is specific heat capacity
of blood, cp is tissue specific heat and heat source, q = qm + qg , where qm denotes the metabolic
heat generation and qg is the volumetric heat generation due to the nanoparticles. We can write
σ = σn +σv ; where the Newtonian stress tensor is given by σn = 2µnV, and viscoelastic of stress
tensor is σv + λx

δσv

δt = 2µvV , the dynamic viscosity, µ = µn + µv and λd
λx

= µn
µn+µv

.
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The mathematical model can be written as follows for the general quantity N,

δN

δt
=
∂N

∂t
+ (u.∇)N)− (V ′N −NV ′)− (V N +NV ),

where the velocity gradient for symmetric part is given by:

V =
1

2
(∇u +∇uT ) =

1

2

(
2ux uy + vx

uy + vx 2vy

)
,

and velocity gradient for anti-symmetric part is given by:

V ′ =
1

2
(∇u−∇uT ) =

1

2

(
2ux uy − vx

uy − vx 2vy

)
.

Meanwhile, the Oldroyd-B equation is given by:

∂Tv
∂t

+ (u.∇)Tv =
2µv
λx

V − 1

λx
Tv + (V ′Tv − TvV ′) + (VTv + TvV ).

The shear-thinning manners for blood flow is viscosity function µ(γ̇) which is dependent on the
shear rate, γ̇ = 2|V|. The dimensionless form of the viscosity function is

f(γ̇) =
µ(γ̇)− µ∞
(µ0 − µ∞)

.

Where, µ0 is the asymptotic viscosity values at zero and µ∞ is infinite shear rates. The viscosity
function is satisfied for the following conditions

lim
î→0+

F (γ) = 1 and lim
î→∞

.F (γ) = 0.

Wehave selected the blood viscosity function f(γ̇) amongmany functions to get bloodflow simula-
tions accurately. The generalized Cross model [51, 21] is used to analysis the blood shear-thinning
which is denoted by

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λγ̇)b)a
with the parameters a, b ,λ > 0.

The following dimensionless quantities are used to dimensionless the above leading partial dif-
ferential equations:
x = LX,y = LY, t = Lt∗/U,u = UUo,v = V Uop = µUP/L, σ = Uµσ∗/L, f = f∗µU/L2,
∇ = ∇∗/L,Wi = λxU/L,Re = ρUL/µ, Pr = µcp/k, θ = k (T − Tc) /qL2, q = Qq0,
wb = ρfk/ρcbL

2,
where the dimensionless quantities X and Y are the coordinates varying along horizontal and ver-
tical directions respectively. U and V are velocity components along X and Y axes respectively,
P is pressure, L is characteristics length, σ* denotes stress tensor, Q is heat source, ρf is perfu-
sion coefficient, and Weissenberg number (Wi), Reynold number (Re), Prandtl number (Pr) are
dimensionless numbers.
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By using the above non-dimensional scale variables, the dimensionless partial differential equa-
tions 6 , 7, 8, 9 are obtained in vector form for 2D stenosis and aneurysmal vessel in domain Ω as
follows:
Continuity Equation:

∇. U = 0. (6)

Momentum Equations:

Re[(U. ∇){U] = −∇P + (1− λ)∆U +∇.σ + f (7)

Re[(V. ∇)V] = −∇P + (1− λ)∆V +∇.σ + f. (8)

Oldroyd-B constitutive equation:

Wi[(U.∇)σ] + σ = 2µvV(U) +Wi[(∇U)σ + σ(∇U)t]. (9)

Bio-heat Equation:

RePr(U.∇)θ = ∇2θ + Q − ρfθ. (10)

3.2.1 Boundary Conditions

In the present study the blood clot, outlet, inlet and rigid wall are four distinct parts of the
model and the boundary settings are essential to solve the governing partial differential equa-
tions. The boundary conditions for present problem are specified as follows:
(i) At inlet:
It is required to prescribe either Dirichlet (velocity) or Neumann (surface force) boundary condi-
tions [45] at the inlet to develop parabolic velocity profile due to insufficient physiological data.
The axial velocity profile and the corresponding extra stresses components [12] are
u = 1.5Ui(1− y2), v = 0
σ11 = 2µvWi(∂u∂y )2, σ12 = µv

∂u
∂y , σ22 = 0;

where y is along the inlet boundary, and the mean fluid velocity at the inlet is Ui
(ii) At outlet:
a. At outlet homogeneous Neumann conditions are used for the velocity components and a con-
stant pressure are prescribed.
b. Due to pressure force (Po) the stress is acting at the boundary, σ, n = −Pon
(iii) At boundary wall:
a. The velocity, u= 0 and the normal component of the extra stress, (σ. n). n = 0 are considered
on the artery wall.
b. Neumann boundary conditions are applied at the artery wall for the pressure.
(iv) At stenosed wall:
The blood clotted wall are heated and the upper wall is cooled at the stenotic area for the present
model.

In this work, the continuity equation 6, momentum equations 7,8, Oldroyd-B equation 9, and
bio-heat equation 10 are considered to account for blood viscoelasticity. The following models
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are tested and shown in Table 2 for different flow rates (q = 0.05, 0.1, 2cm3/ s), that correspond
to the common blood flow rates in the human body for the combination of shear-thinning and
viscoelasticity.

Table 2: Model’s framework.

Model’s Name Shear-thinning (µn) Viscoelasticity (σv)
1. Newtonian (N) µn = µ∞= constant σv =0
2. Generalized Newtonian (GN) µn =µ(γ̇) σv =0
3. Oldroyd-B(OD) µn = µ∞= constant σv
4. Generalized Oldroyd-B (GD) µn = µ(γ̇) σv

3.3 Numerical Analysis

Galerking weighted residual finite techniques are applied to solve the governing partial differ-
ential equations numerically. The finite element methods is described in details by Zienkiewicz
and Taylor [72] and Dechaumphai [17]. The numerical solution of the current study is discussed
in Section-3.3.3.

3.3.1 Mesh Generation

Themesh creation is an essential part in finite element procedure. An unstructured grid can be
formed for the governing equations, and it may be written in integral form. numerical integration
can be carried out precisely without coordinate transformation on the unstructured grid domain.
A triangular mesh generation is shown in Figure 4 in 2D domain. In the technique, the meshing
is a process to sub-divide of a continuous geometry into a set of sub-domains. In the Figure 4, a
domain (Ω) is split into a set of sub-domains, Ωe with edge Γe. A mesh structures of the present
model is demonstrated in Figure 5.

Figure 4: A triangular mesh generation of a domain [49].
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Figure 5: Mesh generation of stenotic and aneurysmatic artery.

Figure 6: Convergence of mean velocity for Re = 103, and Wi = 0.6 with q = 0.1cm3/s.

3.3.2 Grid Sensitivity Test

A grid independence test are used to select the suitable grid size for the present study with
Re=1000,Wi=0.5 and q = 0.1cm3/s. In the case of generalized Newtonian model, the convergence
of the velocity with refinement are shown in Figure 6. The grid sensitivity test is performed for six
different types of meshes. The mean blood velocity is used as sensitivity measures of the accuracy
of the result. In this study, 25009 meshes are carried out for numerical correctness.

3.3.3 Numerical Solutions

The discretized momentum and Oldroyd-B equations subjected to the boundary conditions
simultaneously will be solved using theMatlab programming [29] &Mathematical programming
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package COMSOLMULTIPHYSICS [1] for the dependent variables (velocity, pressure and stress
tensor). So we first solve the velocity from equations 6, 7, 8 and 9 and then compute the pressure
using p = 2µsV (u) + T + σ. The numerical procedure [58] have been used in this work based on
the Galerkin-weighted residual method of finite element formulation and details are given here
below. After the applying the weighted residual method then∫

A

Nα (∇.U)dA = 0, (11)

Re

∫
A

NαU(∇ · U)dA = −
∫
A

Hλ∇PdA+

∫
A

Nα∇σdA+ (1− λ)

∫
A

Nα∇2UdA+

∫
A

NαfdA,

(12)

Re

∫
A

NαU(∇ · V )dA = −
∫
A

Hλ∇PdA+

∫
A

Nα∇σdA+ (1− λ)

∫
A

Nα∇2V dA+

∫
A

NαfdA,

(13)

Wi

∫
A

NαU(∇.σ)dA+

∫
A

NασdA =

∫
A

µνNα((∇.U)dA+Wi

∫
A

NαU(∇.U)σ + σ(∇.U)dA, (14)

RePr

∫
A

Nα(U.∇)θdA =

∫
A

Nα∇2θdA+

∫
A

NαQdA−
∫
A

NαρfθdA. (15)

To generate the boundary integral terms associated with the surface tractions, extra-stress tensor
and temperature the Equations 11, 12, 13, 14, 15 become after applying Gauss’s theorem.

Re

∫
A

NαU(∇.U)dA+

∫
A

Hλ∇PdA−
∫
A

Nα∇ · σdA− (1− λ)

∫
A

Nα∇2UdA−
∫
A

NαfxdA =∫
s0

NαSxds0,

(16)

Re

∫
A

NαU(∇.V )dA+

∫
A

Hλ∇PdA−
∫
A

Nα∇σdA− (1− λ)

∫
A

Nα∇2V dA−
∫
A

NαfydA =∫
s0

NαSyds0,

(17)

Wi

∫
A

NαU · (∇σ)dA +

∫
A

NασdA−
∫
A

µvNα∇ · UdA−Wi

∫
A

Nα[(∇ · U)σ + σ(∇ · U)]dA =∫
A

Nασwdsw,

(18)
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RePr

∫
A

Nα(U.∇)θdA−
∫
A

Nα∇2θdA−
∫
A

NαQdA+

∫
A

NαρfθdA =

∫
sw

Nαqwdsw. (19)

Here, Equations 16, 17 specify surface tractions (Sx, Sy) along the outflow boundary S0, Equa-
tions 18, 19 specify velocity components, stress tensors and fluid temperatures that can be applied
force from the domain along wall boundary Sw. The six-node triangular element is used for the
development of finite element equations. All six nodes are associated with velocities, tempera-
ture, as well as stress tensors; only the corner nodes are associated with pressure. This means that
a lower-order polynomial is chosen for pressure, and which is satisfied through continuity equa-
tion. The basic unknowns for the above differential equations are the velocity components U, V
the stress tensor, σ and the pressure, P. The velocity component and the stress tensor distributions
and linear interpolation for the pressure distribution according to their highest derivative orders
in the differential Equations 6, 7, 8 9, 10 as

U (X,Y ) = NαUα, (20)

V (X,Y ) = NαVα, (21)

σ (X,Y ) = Nασα, (22)

P (X,Y ) = HλPλ, (23)

θ (X,Y ) = Nαθα, (24)

where α = 1, 2, ..., 6; λ = 1, 2, 3; Nα are the element interpolation functions for the velocity com-
ponents and the stress tensor, and Hλ are the element interpolation functions for the pressure.
Substituting the element velocity component distributions, the stress tensor distribution, and the
pressure distribution from Equations 6, 7, 8, 9, 10 the finite element equations can be written in
the form,

KαβxUβ +KαβyVβ = 0, (25)

Re(KαβγxUβUγ +KαβγyVβUγ) +MαµxPµ+Kαβxσβ+

Kαβyσβ + (1− λ)(Sαβxx + Sαβyy )Uβ − fxKα = Qαu ,
(26)
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Re(KαβγxUβVγ +KαβγyVβVγ) +MαµyPµ +Kαβxσβ +Kαβyσβ+

(1− λ)(Sαβxx + Sαβyy )Vβ − fyKα = Qαv ,
(27)

Wi(KαβγxUβσγ +KαβγyVβσγ) +Kαβσµ − µv(KαβxUα+

KαβyUβ)−Wi (KαβγxUβσγ +KαβγyUβσγ) = QαT ,
(28)

RePr(KαβγxUβθγ +KαβγyVβθγ) + (Sαβxx + Sαβyy )θβ −KαQ+ ρfKαβθβ = Qαθ , (29)

where the coefficients in element matrices are in the form of the integrals over the element area
and along the element edges S0 and Sw as,
Kα =

∫
A
NαdA,

Kαβx =
∫
A
NαNβ,xdA,

Kαβy =
∫
A
NαNβ,ydA,

Kαβγx =
∫
A
NαNβNγ,xdA,

Kαβγy =
∫
A
NαNβNγ,ydA,

Kαβ =
∫
A
NαNβdA,

Sαβxx =
∫
A
Nα,xNβ,xdA,

Sαβyy =
∫
A
Nα,yNβ,ydA,

Mαµx =
∫
A
HαHµ,xdA,

Mαµy =
∫
A
HαHµ,ydA,

Qαu =
∫
S0
NαSxdS0,

Qαv =
∫
S0
NαSydS0,

Qασ =
∫
S0
NασwdSw,

Qαθ =
∫
Sw
NαqwdSw.

By using the Newton-Raphson iteration technique, the set of nonlinear algebraic Equations 25, 26,
27, 28, 29 are transferred into linear algebraic equations. Finally, these linear equations are solved
by applying the triangular factorizationmethod and reduced integration technique of Zeinkiewicz
and Taylor [60] and the finite element Equations 25, 26, 27, 28, 29 as,

Fαp = KαβxUβ +KαβyVβ , (30)

Fαu = Re(KαβγxUβUγ +KαβγyVβUγ) +MαµxPµ−Kαβxσβ−
Kαβyσβ + (1− λ)(Sαβxx + Sαβyy )Uβ − fxKα −Qαu ,

(31)

Fαv = Re(KαβγxUβVγ +KαβγyVβVγ) +MαµyPµ −Kαβxσβ−
Kαβyσβ + (1− λ)(Sαβxx + Sαβyy )Vβ − fyKα −Qαv ,

(32)

Fασ = Wi(KαβγxUβσγ +KαβγyVβσγ) +Kαβσβ−
µv(KαβxUβ +KαβyVβ)− 2Wi (KαβγxUγσβ +KαβγyUγσβ)−Qασ ,

(33)
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Fαθ = RePr(KαβγxUβθγ +KαβγyVβθγ) + (Sαβxx+

Sαβyy )θβ −KαQ+ ρfKαβθβ −Qαθ .
(34)

This leads to a set of algebraic equations with the incremental unknowns of the element’s nodal
velocity components, temperatures, and pressures in the form,

Kuu Kuv Kuσ Kuθ Kup

Kvu Kvv Kvσ Kvθ Kvp

Kσu Kσv Kσσ 0 0
Kθu Kθv 0 Kθθ 0
Kpu Kpv 0 0 0




∆u
∆v
∆σ
∆θ
∆p

 = −


Fαu

Fαv

Fασ
Fαθ
Fαp

 , (35)

where
Kuu = Re(KαβγxUγ +KαγβxUγ +KαβγyVβ) + (1− λ) (Sαβxx + Sαβyy ) ,
Kuv = KαβγyUγ,KuT = −Kαβx −Kαβy ,Kup = MαµxKvu = KαβγxV γ,
Kvv = Re(KαβγxUβ +KαγβxVγ +KαγβyVγ) + (1− λ) (Sαβxx + Sαβyy ) ,
Kvσ = −Kαβx −Kαβy , Kvp = Mαµy , Kσu = WiKαβγxσc −Kαβxµv,
Kσv = WiKαβγyσc −Kαβyµv, Kσσ = Kαβ − 2Wi(KαβγxUc +KαβγyUc),
Kσp = 0,Kpu = Kαβx ,Kpv = Kαβy , Kpσ = 0 = Kpp,
Kθθ = RePr(KαβγxUβ +KαβγyVβ) + (Sαβxx + Sαβyy ) + ρfKαβ ,
Kθu = Kαβγxθγ, Kθv = Kαβγyθγ,Kσθ = Kθσ = 0,
Kθp = 0,Kpu = Kαβx ,Kpθ = 0 = Kpp,Kpv = Kαβy .

If the percentage of the overall change compared to the previous iteration is less than the specified
value, then the iteration process is terminated.

4 Numerical Results

The purpose of this work is to identify and find out the effects of stenotic and aneurysmatic
artery, drag coefficient, and dimensionless numbers (Re and Wi) on blood flow for the models
of (i) Newtonian (µn = constant, σv =0) (ii) Generalized Newtonian (µn = µ(γ̇),σv =0) (iii)
Oldroyd-B (µn =constant, σv) (iv) Generalized Oldroyd-B (µn = µ(γ̇),σv =). All types are used
to analyze the effect of the shear-thinning and viscoelastic behavior of human blood. In this paper,
non-Newtonian fluids are of great interest due to blood viscoelasticity behaviour. It is found that
the generalized Oldroyd-B type models are more appropriate to analyze blood flow simulations
and ensure more accuracy. In the 2D stenotic and aneurysmatic models, the parabolic velocity
and the extra stresses components are employed because of the viscous properties of blood for the
generalized cases.

A real case study has been done [4] for endovascular treatment in the case of abdominal aortic
aneurysm and renal artery stenosis with renal function and blood pressure. A cardiovascular
electronic system has been used [24] to analyze the artery of aneurysms and renal stenosis. The
results have shown the pressure is decreased due to the aneurysms and stenosis. In this study, the
mathematical method showed that compliances of the aorta portions and renal increased with the
increased rate of the aneurysmal and stenotic artery. A study of multiple aneurysms andmultiple
stenotic lesions in the renal artery and segmental arteries have been completed [23] for a 13-year-
old boy with type I neurofibromatosis and severe hypertension.Real analysis is found [57] for
a patient with behcet’s disease in the presence of stenosis and aneurysm of Coronary Arteries.
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Recently, a case report is found [28] for an HIV-infected 53-year-old man and they have discussed
the impact of coronary artery aneurysm, ectasia, and stenosis on blood flow.

To evaluate the accuracy and confirmation of this work, we have computed a validation test
with Prokop et al [45] for Newtonian (N), generalized Newtonian (GN), Oldroyd-B (OD) and
generalized Oldroyd-B (GD) cases. We calculate velocity, pressure, and drag coefficients with
various dimensionless numbers for the considered model. In the present numerical study, the
following thermal properties and tissue [63] are used:

0 ≤ Wi ≤ 1, 0 < Re ≤ 3000, µ0 = 0.16Pa.s, µn = 0.0036Pa.s, a = 1.23, b = 0.64, λ = 8.2s, ρ =
1050kg.m−3, Tb = 370c, Cb = 3770(J/Kg.k),Wb = 0.5(Kg/sec.m3), K = 0.5(J/s.m.k), Pf =
400, Lw = 2R,L = 0.03m,R = 3.1mm,hs = R and ha = 3R.

It is a very important investigation to find out the effects of Reynold numbers, Weissenberg
number, stenotic and aneurysmatic artery, and drag coefficient at the stenosed wall on blood flow
for the various models Newtonian (N), generalized Newtonian (GN), Oldroyd-B (OD) and gen-
eralizedOldroyd-B (GD). The comparative study of blood flow simulation is shown in Figures 8, 9
and 11 with the presence and absence of blood clots at the present model in terms of axial velocity
and pressure contour lines for all cases. The blood flow characteristics have a significant change
at the throat of stenosis. Figures 10, 12, 13 and 14 provide the graphical illustration of the velocity,
pressure, wall shear stress and drag coefficient of blood flow. The graphical of blood flows has
been shown in Figure 7 as follows, which is almost similar to the previously published work by
Prokop et. al. [45].

Figure 7: Contrast of velocity contour for all models with V. Prokop et al. (left) and present work (right).

4.1 Stenotic and Aneurysmatic Effects on Blood Flow

The blood flow simulation is shown in Figures 8 and 9 with the presence and absence of blood
clots at bottom stenosed walls for all models. The indelible recirculation zones originate at the
constriction region of the stenotic and aneurysmatic arteries for all cases. The shape of the re-
circulation zone is oval-like and it has been reduced at the generalized Oldroyd-B model. This
recirculation is indicative of iso-blood flow at the stenotic artery. The blood shear-thinning prop-
erties are important reasons to form the recirculation zone and dominate the low-shear area of
stenotic and aneurysmatic arteries. At aneurysms, the velocity contour lines are almost alike for
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Newtonian and Oldroyd-Bmodels, but little dissimilarity is found at the rest of the models. In the
absence of blood clots, the blood flow simulation is presented in Figure 8 (right) for thementioned
models where the recirculation zones are found at the throat of stenosis. These recirculation zones
are symbolic of regions over a significant portion of each model where the flow is moving at the
same values. The recirculated area is comparable bigger at blood clotted models than non-blood
clotted models for all cases. The shape of the recirculation zone is another significant influence
of blood clots among the models. At aneurysm, the reversal flow regions and flow separation
are found concerning to the vessel axis in the Figures 8 and 9 but greater flow separation regions
are created in non-blood clot models. It is clearly visible for non-blood clot in the Figure 9, the
backflow is found just behind the stenotic region and centre of the aneurysmal area. A significant
disorder of blood flow has developed at dilation area for Newtonian and generalized Newtonian
cases.

Figure 10 provides the corresponding effects on blood velocity numerically at the presence
and absence of blood clots for all models where Re = 1000 and Wi = 0.5. It is observed that
the velocity profile is almost opposite for the blood clot model and the non-blood clot model.
The maximum blood velocity is found at the throat of stenosis for the non-blood clot model and
the lowest value is in the blood clot model. For the existence of blood clots, the blood velocity is
comparable lower to another model which leads to local viscosity increases significantly.

Figure 8: Velocity contour line on blood flow through stenosed and anuerysmatic vessel with blood clot (left) andwithout blood clot (right)
at Re=1000 and Wi = 0.6.
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Figure 9: Vector patterns on blood flow with blood clots (left) without blood clots (right) at Re=1000 and Wi = 0.6.

Figure 10: Comparison of velocity profile with blood clot (left) and without blood clots (right).
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4.2 Stenotic and Aneurysmatic Effects on Pressure Distribution

The pressure distribution of blood flow is exhibited for all cases in Figure 11 having blood
clots and without blood clots. In Figure 11 (left), the steep contour plots display the pressure gain
at a minimum value at the separation point and decline gradually along the vessel axis. Due to
the formation of blood clots, the pressure has peaked at the reattachment point in the stenosis
region and the pressure gradient is high for all events, which is agrees with Muraki’s [37] test.
The pressure gradient has changed slowly and densely at clotted area. In the case of the gener-
alized Oldroyd-B model, pressure contour lines become more compact and distort curves within
a clotted area because of the shear-thinning properties of blood. The different pressure contour
plots of blood flow are found in the Figure 11 (right) for all situations. The parabolic profile has
developed at the throat of stenosis, and separation points are originated which leads to how the
pressure has reached a minimum point. The main difference is visible between the two models at
the constriction area for all models. The pressure is more dominated at stenosis regions compared
to blood clot models because of blood viscosity. In the Figure 11 (right), the pressure patterns are
almost alike for all models, and show the similarities at the far end of stenosis but various pres-
sure contour plots are produced at blood-clotted models. From Figure 12, the blood pressure has
decreased gradually in the presence of a blood clot and has dramatically changed for non-blood
clotting cases. In the absence of blood clots, the pressure gained the lowest value at the throat of
stenosis and increased after stenosis. The Newtonian fluid is faster than the non-Newtonian fluid
for both cases, which leads to a minimum value at the generalized Oldroyd-B model.

Figure 11: Pressure distribution on blood flow through stenosed and anuerysmatic vessel with blood clots (left) and without blood clots
(right) atRe = 1000 andWi = 0.6.
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Figure 12: Comparison of pressure profile with blood clot (left) and without blood clot (right).

4.3 Drag Coefficient Effects on Blood Flow

In Figure 13, the drag coefficient (resistance) of blood flow has increased at the blood clot
model and non-blood clot model. It is found that in the absence of blood clots at the stenotic area,
the drag coefficient is high compared to having blood clots in a stenosis artery for Newtonians for
Newtonian, Generalized Newtonian, Oldroyd-B, Generalized Oldroyd-B models with the flow
rate q = 0.1cm3/s. In the case of non-blood clots, the resistance of blood flow is almost the same
for the Newtonian and Oldroyd-B models, but the stenotic zones have created more obstacles to
blood flow at the generalized Oldroyd-B model because of viscoelastic behaviour. The hindrance
of blood flow over blood lumps has increased for all cases, but the hurdle is more at a generalized
model for viscosity. From Figure 14, the blood flow resistance increases with the increases of
Reynold numbers, and Weissenberg numbers for all four models. The magnitude of the drag
coefficient is higher for the generalized model and lower for the Oldroyd-B model with increases
in the Reynold numbers. Behr et al. [8] have shown that the drag coefficient is a function of
Weissenberg numbers and it increases for all cases with increases in Wi. The most significant
value of the drag coefficient has originated at the generalized Oldroyd-B model in the low shear
region.

Figure 13: Drag effects of blood at bottom stenosed vessel wall with blood clots (left) and without blood clots (right) when Re = 1000
andWi = 0.6.
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Figure 14: Drag effects of blood flow at bottom stenosed vessel wall having blood clots with respect to Re (left) andWi (right) for all models.

5 Conclusions

In this paper, the simultaneous effects of stenosis and aneurysm in the blood clotting artery
have been discussed along with the generalized models and Oldroyd B-fluid model. The finite
element technique is used to simulate the physical problem. The generalized Newtonian model,
Oldroyd-B models and generalized Oldroyd-B models are used to investigate blood viscosity and
shear-thinning properties accurately. The change in blood flow patterns is insignificant at the
blood clotting area for all models compared to the stenotic area. So, any stenotic artery indicates
severe atherosclerosis diseases and creates disorder in human blood flow. Among all models, the
generalized Oldroyd-B model has shown the best performance to find out blood flow variables
due to the shear-thinning and viscoelasticity properties of blood. The impact of stenotic vessels,
aneurysmatic arteries, blood clots, dimensionless numbers and drag coefficients are very impor-
tant for blood flow analysis. In this study, it is found that the effect of stenotic and aneurysmatic
artery on blood flow is significant. It is found that blood velocity and pressure have changed
rapidly at the throat of stenosis for stenotic models compared to blood clots models. The effi-
ciency and competence of the theoretical results have been discussed by numerical method using
finite element techniques. Based on the above computational results, we conclude that:

1. The shear-thinning effects are related to the blood velocity and pressure that are more pro-
nounced than the viscoelastic ones.

2. The bloodflowparameters are predominant in the recirculation zones compared to the blood
clot model.

3. The impact of blood clots on blood flow behavior at the hub of stenosis is a key cause in the
onset of atherosclerosis diseases.

4. The effect of the drag coefficient on blood flow is more extreme in stenotic (without blood
clot) arteries for all models. It is an important factor to identify arterial diseases.

5. Due to the presence of blood clots at the throat of stenosis, the recirculation zones are more
elliptic for all models, and minimum velocity and maximum blood pressure are observed.

6. The impact of stenosis and aneurysm artery on blood flow leads to the severeness of arterial
diseases which may be helpful in medical science.
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7. Blood velocity has achieved the maximum value at the narrow cross-sectional area (centre
of the stenotic artery) in the absence of blood clots and gained a minimum value at the
dilated cross-sectional areawith the presence of blood clots, which is theoretically authentic.
Besides, we have computed blood pressure for the present model, and the result is quite
agreeable with the theory for all cases.
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